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The s ign  of t h e  current  c a r r i e r s  determined from thermoelectric e lec t ro-  
motive force  measurements on aluminum oxide ( A l 2 O 3 )  by Pappis and Kingery w a s  
incor rec t ly  reported by the o r i g i n a l  authors ( i n  ref. 3 of t h i s  r epor t ) .  The 
s ign  f o r  t he  cur ren t  c a r r i e r s  a t  1500' C and an oxygen pressure of 1 atmosphere 
should be negative, and t h a t  f o r  cur ren t  c a r r i e r s  a t  1500° C and an oxygen 
pressure of 10-lo atmosphere should be pos i t ive .  

The e l e c t r i c a l  conductivity data  of Pappis and Kingery f o r  A1203 exposed 
and 10-lo atmosphere show breaks a t  tempera- t o  oxygen pressures of both 

tu re s  of approximately 1630' C, above the  temperatures a t  which thermoelectric 
electromotive force  measurements were made. Since the mgnitudes of the  a c t i -  
va t ion  energies above the  breaks a r e  i n  reasonable agreement with the  i n t r i n s i c  
ac t iva t ion  energy f o r  oxide ion diffusion,  t he  author of the  subjec t  r epor t  
s t i l l  bel ieves  t h a t  the  upper port ions of these pa r t i cu la r  conductivity data  
a r e  cont ro l led  by i n t r i n s i c  oxygen-ion motion, as indicated i n  t h e  repor t .  The 
change from posi t ive- ion con t ro l  a t  lower temperatures t o  negative-ion cont ro l  
a t  higher temperatures could r e s u l t  from s l i g h t  losses  of oxygen from the  
samples. 

Corrected versions of f igu res  3 and 4 are at tached.  I n  the  o r i g i n a l  ver- 
s ion  of f igu re  3, t he  conductivity da ta  ca lcu la ted  from di f fus ion  data were a l l  
inadvertent ly  p lo t t ed  too l a rge  by a f ac to r  of 100. 

Some var ia t ions  occur i n  the  values of ac t iva t ion  energies l i s t e d  as 2.57 
and 2.85 e lec t ron  v o l t s .  Actual overlap i n  value is  noted. Nevertheless, 
there  are two d i f f e r e n t  processes occurring. 

Even though modifications are required i n  the  r epor t  where the  data  of 
Pappis and Kingery are r e fe r r ed  to ,  t h e  conclusions do not require  modification. 
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TFWYSPORT PHENOMENA IN ALUMINUM OXIDE 

by Myron 0. Davies 

Lewis Research Center 

The r e s u l t s  of ava i lab le  e l e c t r i c a l  conductivity determinations and s e l f -  
d i f fus ion  measurements f o r  aluminum oxide were reevaluated i n  terms of ionic  
mechanisms of t ranspor t .  Four ac t iva t ion  energies were found: 5.9,  2.6,  2.9, 
and 0.66 e lec t ron  vol t s .  These ac t iva t ion  energies seem t o  be those,  respec- 
t i v e l y ,  f o r  i n t r i n s i c  oxygen-ion motion, e x t r i n s i c  oxygen-ion motion, i n t r i n s i c  
aluminum-ion motion, and e x t r i n s i c  aluminum-ion motion. The conductivity of 
t he  polycrys ta l l ine  aluminum oxide specimens used i n  t h i s  study i s  la rger  than 
previously reported data  f o r  aluminum oxide s ingle  c rys ta l s .  The r e s u l t s  f o r  
aluminum oxide a re  compared with those f o r  magnesium oxide and appear t o  be 
consis tent .  

INTRODUCTION 

As i n  the  case of magnesium oxide, the  r e s u l t s  of a number of s tudies  of 
t ranspor t  phenomena i n  aluminum oxide a re  i n  the  l i t e r a t u r e .  These s tudies  in-  
clude measurements of se l f -d i f fus ion  coef f ic ien ts  as well  as of e l e c t r i c a l  con- 
duct ivi ty .  Conductivity r e s u l t s  obtained by d i f f e ren t  inves t iga tors  vary by 
several  orders of magnitude, and many d i f f e ren t  ac t iva t ion  energies have been 
reported.  As was the  case with magnesium oxide ( r e f .  l), however, t he  author 
took a la rge  f r a c t i o n  of t h e  reported da ta  and obtained a consis tent  p ic ture  
based upon ionic  conduction i n  aluminum oxide. 
i n  in t e rp re t ing  t h e  experimental r e s u l t s  w i l l  be discussed i n  the  hope of pre- 
venting s i m i l a r  problems i n  the  in t e rp re t a t ion  of t ranspor t  phenomena i n  other 
cases. 

The sources of major d i f f i c u l t y  

Besides being of grea t  i n t e r e s t  i n  view of the  many p r a c t i c a l  appl icat ions 
f o r  aluminum oxide, a proper in t e rp re t a t ion  of t h e  t ranspor t  phenomena i n  a lu-  
minum oxide i s  of great  importance i n  terms of fundamentals. Aluminum oxide, 
l i k e  magnesium oxide, i s  a good example of an oxide with t r u l y  ion ic  bonding. 
These two ionic  oxides a re  t h e  ones on which most of t he  experiments were per- 
formed. Results obtained with these oxides should give some idea as to what t o  
expect with other ion ic  oxides. 

The physical and chemical propert ies  of aluminum oxide make fundamental 
s tud ies  car r ied  out on it somewhat simpler experimehtally than those with mag- 
nesium oxide. Its considerably lower melting point allows s tudies  t o  be con- 



ducted much more simply at  moderately high r e l a t i v e  temperatures; i t s  lower 
chemical r e a c t i v i t y  s impl i f ies  the  problems associated with maintaining pure 
mater ia ls  and clean surfaces.  

Because of t h e  la rge  quantity of experimental data  already avai lable ,  
l i t t l e  addi t ional  experimentation was  needed i n  order to complete t h e  in te rpre-  
t a t i o n .  The author 's  experimental work w a s  intended t o  f i l l  the  need for e lec-  
t r i c a l  conductivity da ta  ,measured i n  a su i tab le  atmosphere where posi t ive ion  
conductivity i s  expected t o  predominate. 

EXPERlMENTAL PROCEDURFS 

The polycrystal l ine specimens used f o r  t h i s  conductivity study consisted 
of disks of Triangle RR aluminum oxide, which were approximately 26.5 m i l l i -  
meters i n  diameter and 1 . 7  mil l imeters  thick.  This ,material i s  s t a t e d  by the  
manufacturer t o  be s i l i c a  f r e e  and t o  be no l e s s  than 99.7 percent aluminum 
oxide (AlzOg). 
meter. 
i r r e g u l a r i t i e s  on the  disks  were removed with a r o t a t i n g  diamond wheel. 

The bulk densi ty  of these disks  w a s  3 . 7  g r a m s  per cubic cent i -  
(The t h e o r e t i c a l  densi ty  f o r  A1203 i s  3.97 g/cu em.) Sl ight  surface 

The i n e r t  atmosphere furnace, the gas introduction system, and t h e  measur- 
ing equipment were t h e  same ones used f o r  t h e  measurements on magnesium oxide 
(MgO) ( r e f .  1). Multiple specimens were used i n  the  specimen holder, which has 
a l s o  been described previously ( r e f .  1). 
was  used as the  atmosphere f o r  the  measurements and w a s  held a t  approximately 
3 pounds per square inch gage. The oxygen content of t h i s  argon was  approxi- 
,mately 0.001 percent. 
motion w a s  important. 
red by posi t ive- ion motion. ) 

Flowing argon (99.995 percent minimum) 

Having enough oxygen gas present t o  ensure posi t ive ion 
( E l e c t r i c a l  conduction i n  MgO i n  t h i s  atmosphere occur- 

The conductivity r e s u l t s  f o r  temperatures up t o  68 percent of the  absolute 
The logarithm of the  product of e lec-  melting point a r e  presented i n  f igure  1. 

t r i c a l  conductivity and absolute temperature i s  p lo t ted  against  the  rec iproca l  
of absolute tempera.ture i n  order t o  take i n t o  account t h e  temperature dependence 
of the  preexponentia.1 term of the  conductivity equation ( c f .  r e f .  2 ) .  The high- 
and low-tempera,tui-e a&iva.tion energies from these data a r e  2.85 and 0.66 elec-  
t r o n  v o l t s ,  respecti-iElly. There i s  no indicat ion of any fur ther  changes i n  
slope a t  the highest ezperi-mental temperatures. 

The high-tempera-ture ax t iva t ion  energy i s  i n  reasonable agreement with t h e  
value of 2 .97  e lec t ron  v o l t s  obtained by Pappis and Kingery ( r e f .  3) from elec-  
t r i c a l  conductivity measurements conducted on s ingle  c r y s t a l  sapphire i n  an a t -  
mosphere of pure oxygen (02) gas. 
polycrystal l ine data  a r e  s l i g h t l y  l e s s  than one order of magnitude la rger  than 
the  s ingle  c r y s t a l  conductivity data. Thermoelectric electromotive force mea- 
surements conducted by Pappis and Kingery ( r e f .  3) indicated t h a t  i n  l atmo- 
sphere of 02 conduction i n  A1203 occurred predominantly v i a  posi t ive current 
c a r r i e r s .  

Furthermore, as w a s  the  case with MgO, the  
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Figure 1. - Conductivity of Triangle RR aluminum oxide obtained from two sets 
of similar specimens r u n  independently. 

The energy of formation of Schottky pa i r s  calculated from the  au thor ' s  
high- and low-temperature ac t iva t ion  energies i s  5.48 e lec t ron  vol t s .  

DISCUSSION 

Nature of Conductivity i n  Aluminum Oxide 

The mechanisms of conductivity f o r  A1203 suggested by many authors have 
involved e lec t ron  and hole migration. The reasons t h i s  i n t e rp re t a t ion  need not 
follow from the  experimental data w i l l  be discussed subsequently. The most 
nearly d i r e c t  approach used t o  determine t h e  nature of t he  conductivity i s  t h a t  
of po ten t i a l  measurements. Since there  i s  but one such study reported and be- 
cause of t he  d i f f i c u l t i e s  involved i n  obtaining po ten t i a l  measurements, other 
evidences as t o  t h e  nature of t h e  conductivity must a l s o  be considered. 

The author f e e l s  t h a t  a t  present the  s t rongest  evidence as t o  the  nature 
of t he  conductivity of A1203 r e s u l t s  from a comparison of conductivity data  
with se l f -d i f fus ion  data.  One of t h e  most ca re fu l ly  performed conductivity ex- 
periments was  t h a t  by Heldt and Haase ( r e f .  4 ) ,  who measured the  conductivity 
of high-purity A1203  specimens i n  vacuo. Their data a re  l i nea r  over t he  temper- 
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ature range from 555' t o  1465' C and 
a r e  p lo t ted  i n  f igure  2. There is  no 
indicat ion of a change i n  slope even 
i n  the  highest  temperature region. 
The ac t iva t ion  energy from t h e i r  data,  
2.57 e lec t ron  v o l t s ,  i s  i n  s a t i s f a c -  
t o r y  agreement with the  ac t iva t ion  
energy of 2.50 electron v o l t s  obtained 
i n  t h e  e x t r i n s i c  region f o r  oxygen-ion 
(O=) s e l f  diffusion i n  s ingle  c r y s t a l  
A1203 by Oishi and Kingery ( r e f .  5 ) .  
This agreement would seem t o  imply 
t h a t  an ionic  conductivity mechanism 
based on O= motion predominated over 
t h a t  e n t i r e  temperature range. Ex- 
t r i n s i c  O= conductivity would be ex- 
pected since t h e i r  conductivity mea- 
surements were made i n  vacuo ( r e f .  4 ) ,  
where a s m a l l  l o s s  of oxygen from t h e  
samples should have occurred. 

Furthermore, with an oxygen pres- 
sure of atmosphere, thermoelec- 
t r i c  electromotive force measurements 
conducted on A1 03 by Pappis and 
Kingery ( re f .  37 indicated t h a t  con- 
duction occurred by negative current 
c a r r i e r s .  It i s  of great importance 
t o  r e a l i z e  t h a t  thermoelectric e lec-  
tromotive force measurements can give 
t h e  s ign of the  predominant current 
c a r r i e r  but cannot give evidence t o  
determine whether e lectrons (or holes)  
or ions a r e  involved. I n  t h i s  regard 
thermoelectric electromotive force 
measurements a r e  i n f e r i o r  t o  H a l l  co- 
e f f i c i e n t  measurements, which can con- 
firm unambiguously the presence of 
e lec t ronic  (or hole)  conductivity. 
Although l i t t l e  experimental work has 
been done with ionic  conductors, t h e r -  
m a l  d i f fusion,  which would produce a 
thermoelectric electromotive force,  
has been detected with c e r t a i n  ionic  
s o l i d s  (c f .  r e f .  2 ) .  Thermoelectric 
electromotive forces  can thus be pro- 
duced by processes i n  which ions move. 

To the  au thor ' s  knowledge, 
Schmalzried has conducted the  only 
study of t h e  poten t ia l s  of oxygen con- 
centrat ion c e l l s  with A l Z 0 3  (ref.  6 ) .  

4 



The experimental c e l l  u t i l i z e d  f o r  h i s  p o t e n t i a l  measurements consisted of a 
commercially prepared tube of reasonably high p u r i t y  A1203 (Purox), one w a l l  of 
which was exposed t o  air, t h e  other t o  var iable  oxygen p a r t i a l  pressures ob- 
ta ined by reac t ion  of various mixtures of carbon dioxide - carbon monoxide or 
carbon dioxide - hydrogen. Schmalzried s t a t e s  t h a t  h i s  experimental r e s u l t s  in-  
dicate  t h e  presence of both ionic  and e lec t ronic  (or hole)  conduction below 
1323' C and e lec t ronic  conduction above 1 3 2 3 O  C. The important thing i s  t h a t  an 
ionic conductivity mechanism i s  observed. The f a c t  t h a t  he does not f i n d  t h a t  
a l l  the  conduction i s  ionic  may r e s u l t  from the  experimentally obtained poten- 
t i a l s  being mixed poten t ia l s  caused by t h e  chemical react ions of the  gaseous 
components other than 02 with t h e  A l 2 O 3 .  Further s tudies  with carefu l ly  puri-  
f i e d  argon-oxygen mixtures would be helpful  f o r  quant i ta t ive evaluation of t h e  
percentage of t h e  ionic  character of t h e  conductivity. 

i t y  determinations of A1203 t h a t  extend higher than 1323' C with no indicat ion 
of a change of slope near t h a t  temperature. 
seems t o  indicate  conductivity by an O= mechanism. The mechanism of conductiv- 
i t y  i s  therefore  inferred s t i l l  t o  be ionic  above 1323O C.  The data  of r e f e r -  
ence 4 i s  one of these cases. I n  summary, the change i n  mechanism of r e f e r -  
ence 6 i s  not supported by the  conductivity data. 

It i s  important t o  r e a l i z e  t h a t  there  a r e  a number of e l e c t r i c a l  conductiv- 

The ac t iva t ion  energy below 1323' C 

As  i s  discussed i n  reference 1, transference number determinations a r e  not 
very usefu l  i n  determining t h e  nature of the  conductivity i n  pure compounds such 
as A1203 or MgO. The primary d i f f i c u l t y  i s  t h a t  the  electrode react ion controls  
what the  conductivity mechanism w i l l  be. For transference measurements of ox- 
ides  i n  an a i r  atmosphere, the cathode 

4 e-  + 
and the anode reac t ion  should be 

2 o= -j 

reac t ion  should be 

o2 -f 2 o= 

02 + 4 e- 

If the  conduction between electrodes then proceeds by O= migration, there  will 
be no weight changes observable i n  the anode and t h e  cathode portions of the  
s o l i d  e lec t ro ly te  caused by solut ion or deposit ion of metal. Such r e s u l t s  have 
been obtained with other s o l i d  oxides. For example, c e r i c  oxide (Ce02) s o l i d  
solut ions with lanthanum oxide (La2O3) , neodymium oxide (NdZOg) , and yttrium 
oxide (Y2O3) show negligible weight changes i n  transference number determina- 
t i o n s  ( re f .  7 ) .  Furthermore, the  amount of oxygen l ibera ted  at  t h e  anode f o r  
s i x  of the  eight  compositions studied was t h e  amount corresponding t o  a t rans-  
ference number f o r  O= of approximately 1. 

Kingery and Meiling a l s o  observed no weight changes i n  t h e i r  transference 
measurements on A1203 conducted i n  air ( r e f .  8 ) .  This lack of weight change 
eliminates t h e  p o s s i b i l i t y  of ca t ion  motion. Furthermore, no weight changes 
were encountered when s t a b i l i z e d  zirconium oxide ( ~ r ~ . ~ ~ ~ a ~ . ~ ~ 0 ~ . ~ 5 )  disks 
(known anionic conductors) were placed between t h e  A1203 disks and the  elec-  
trodes.  Since the  presence of such disks  should have prevented electronic  con- 
duc t iv i ty  from occurring i n  the  A12O3, such r e s u l t s  would seem t o  imply t h a t  t h e  
conductivity was by anions. Kingery and Meiling believed, however, t h a t  the  O= 
conductivity could not be large enough t o  provide the  necessary number of cou- 
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lombs passed, and therefore  they  considered t h e  conductivity t o  be electronic .  
(Weight changes would be zero f o r  t h i s  type of conductivity, a l so . )  
soning for considering O= t r a n s f e r  to be an ins igni f icant  contributor depended 
upon a comparison a t  1500' C of t h e  magnitude of conductivity made i n  10-5 at-  
mosphere of 02 ( i n  t h e  e x t r i n s i c  range) with the  magnitude of conductivity ( i n  
the  e x t r i n s i c  range) calculated from di f fus ion  data  measured i n  02 at  152 t o r r .  
Such a comparison may wel l  be misleading f o r  a t  l e a s t  two reasons: 
r e s u l t s  obtained, i n  t h e  e x t r i n s i c  range i n  both cases, w i l l  be s t rongly depend- 
en t  upon the p u r i t y  of t h e  sample, both chemically and i n  dis locat ion content. 
( 2 )  The measurements were made under v a s t l y  d i f fe ren t  oxygen pressures. Oxygen- 
ion conductivity would be expected t o  be s t rongly dependent upon oxygen p a r t i a l  
pressure. (This s i t u a t i o n  can be t r u e  even i f  the  t o t a l  ionic  conductivity does 
not vary grea t ly . )  Since a large v a r i a t i o n  i n  O= e x t r i n s i c  range conductivity, 
exceeding three  orders of magnitude, has been shown t o  occur with MgO ( r e f .  l), 
it i s  not inconceivable t h a t  an equally large var ia t ion  would occur with Al203. 
(See f i g .  3, p. 8, which i s  discussed i n  t h e  following subsection.)  It i s  con- 
cluded then t h a t  t h e  transference number measurements can best  be explained on 
the  basis  of O= conductivity. 

Their rea-  

(1) The 

Reevaluation of Available Conductivity and Diffusion Data on Aluminum Oxide 

Ionic mechanisms of conductivity and the  r e l a t e d  se l f -d i f fus ion  measure- 
ments should produce four ac t iva t ion  energies, two based upon aluminum-ion 
(Al+++) motion and two based upon O= motion. A carefu l  examination of t h e  
avai lable  conductivity and d i f fus ion  data  f o r  Al2Og indeed gives evidence f o r  
four d i f fe ren t  values f o r  a c t i v a t i o n  energies,  a t  approximately 5.9,  2.6, 2.9,  
and 0 . 7  e lec t ron  vol t s .  Each of these values i s  i d e n t i f i e d  and discussed i n  
the  order mentioned. 

Evidence f o r  the  value of 5.9 e lec t ron  v o l t s  comes from O= diffusion data ,  
e l e c t r i c a l  conductivity data,  s i n t e r i n g  s tudies  conducted on A1203 spheres, and, 
surpr is ingly,  a l s o  from Al+++ se l f -d i f fus ion  experiments. 
ence 5 f o r  O= diffusion i n  Al2Og single  c r y s t a l  and polycrystal l ine samples 
show a r e l a t i v e l y  large s c a t t e r ,  and d i f fe ren t  ac t iva t ion  energies a re  reported 
t h e r e i n  f o r  the  i n t r i n s i c  range f o r  these two types of samples. It i s  hard to 
decide i n  c e r t a i n  cases whether the  datum point represents  i n t r i n s i c  or ext r in-  
s i c  behavior. The r e s u l t s  from a least-squares evaluation of the  s ingle  c r y s t a l  
data  i s  strongly dependent upon which points a r e  included and which a r e  ne- 
glected. The ac t iva t ion  energy values from such analyses range from 5.0 t o  
6.5 e lec t ron  vol t s .  The value obtained i n  reference 5 seems t o  be based s o l e l y  
upon the data for spheres, although we know of no reason f o r  disregarding the  
r e s u l t s  obtained on grain samples. I n  the reevaluation of the s ingle  c r y s t a l  
data an attempt was made t o  weight equally a l l  reported experimental points t h a t  
appear t o  be i n  the i n t r i n s i c  range. The r e s u l t i n g  l i n e  has an equal number of 
these points on each s ide ,  and the  sum of the  distances of points from the  l i n e  
has been minimized. Moreover, we f e e l  t h a t  both s e t s  of data,  s ingle  c r y s t a l  
and polycrystal l ine,  show t h e  same ac t iva t ion  energy. Furthermore, the  reeval-  
uated value f o r  the  ac t iva t ion  energy, 5.87 e lec t ron  v o l t s ,  may be a reasonable 
one, since it i s  i n  excel lent  agreement not only with the  high-temperature a c t i -  
vation energy f o r  conductivity of s ingle  c r y s t a l  Al2Og (5.8 eV, as determined 

The data  of r e f e r -  
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i n  r e f .  3)  but a l s o  with the  ac t iva t ion  energy of 5.85 electron v o l t s  obtained 
from the  s in te r ing  s tudies  of Kuczynski, Abernethy, and Allan on A1203 spheres 
( r e f .  9). 

An ac t iva t ion  energy of 5.9 e lec t ron  v o l t s  would not be expected from the 
Al+++tracer  diffusion r e s u l t s .  Yet, examination of these data ( r e f .  10) r e -  
veals t h a t  , within the l i m i t s  of experimental e r r o r ,  t h e  diffusion ac t iva t ion  
energy r e s u l t i n g  from the aluminum t r a c e r  measurements i s  the same as t h a t  r e -  
s u l t i n g  from the  oxygen t r a c e r  measurements. I n  addition, the values f o r  the  
diffusion coef f ic ien ts  i n  t h e  two cases a r e  very nearly equal. This unexpected 
r e s u l t  could indicate  t h a t  both s e t s  of measurements a r e  controlled by t h e  same 
process - O= motion. By comparison with the  r e s u l t s  f o r  MgO, the  measured a c t i -  
vat ion energy i s  far too large t o  represent A1+++ diffusion. Furthermore, it 
would not be expected to be equal t o  the  ac t iva t ion  energy f o r  O= motion. The 
f a c t  t h a t  the  Al+++ diffusion runs were made i n  an a i r  atmosphere may i n  some 
way have been responsible f o r  the r e s u l t s  obtained. Impurities i n  the  radio- 
ac t ive  A1203 samples could a l s o  have played a par t .  

The data  f o r  e x t r i n s i c  O= motion, which y ie ld  an ac t iva t ion  energy of ap- 
proximately 2.6 e lec t ron  v o l t s ,  were discussed i n  the  previous subsection. 

Figure 3 contains much of the  data  thus far discussed i n  t h i s  subsection. 
A number of s e t s  of data i n  which O= motion seems t o  be the  control l ing mecha- 
nism a r e  plot ted i n  t h a t  f igure.  Other sets of e l e c t r i c a l  conductivity data  
f o r  polycrystal l ine A1203 t h a t  appear i n  t h e  l i t e r a t u r e  could a l s o  be included 
if space permitted. The Nernst-Einstein equation, with an assumed value f o r  
the  transference number of 1, w a s  used t o  convert diffusion data  t o  conductivity 
data, so  t h a t  both types could be p lo t ted  i n  t h e  same f igure.  The values f o r  
ac t iva t ion  energies f o r  a l l  these data are  approximately 5.87 e lec t ron  v o l t s  
f o r  the  i n t r i n s i c  range and 2.57 e lec t ron  v o l t s  f o r  the  e x t r i n s i c  range. 
Reasonable estimates of the possible var ia t ion  i n  these values would be 
k0.15 e lec t ron  v o l t  f o r  the i n t r i n s i c  data  and k0.07 e lec t ron  vol t  f o r  the ex- 
t r i n s i c  data. The energy of formation of Schottky p a i r s  calculated from these 
ac t iva t ion  energies is  5.49 electron vol ts .  This value i s  i n  excellent agree- 
ment with the  value of 5.48 e lec t ron  v o l t s  from t h e  conductivity data, which 
the  author i n t e r p r e t s  as conductivity predominantly by AIL++'. 

The two ac t iva t ion  energies so  far discussed a r e  based upon both conduc- 
t i v i t y  and diffusion data. 
there  a r e  j u s t  conductivity data avai lable .  Since the  value of 2.9 e lec t ron  
v o l t s  i s  not markedly d i f fe ren t  from the  one of 2.6 e lec t ron  v o l t s  discussed 
previously, it i s  important t o  show tha t  the  two do not r e a l l y  represent t h e  
same process. Conclusive evidence comes from thermoelectric electromotive 
force measurements of reference 3, which have been mentioned previously, since 
they show t h a t  t h e  s ign of t h e  current c a r r i e r  d i f f e r s  i n  the  two cases. POS- 
i t i v e  current c a r r i e r s  were indicated f o r  the  process with an ac t iva t ion  energy 
of approximately 2.9 e lec t ron  v o l t s  and negative current c a r r i e r s  f o r  the  case 
of 2 .6  e lectron vol t s .  Additional evidence comes f r o m  a consideration of pos- 
s i b l e  var ia t ion  i n  the  values themselves. Reasonable estimates f o r  the  two 
cases, 2.57kO.07 and 2.8520.12, indicate  t h a t  they would not overlap i n  a c t u a l  
value. 

For the  remaining two, 2.9 and 0.7 e lec t ron  v o l t s ,  
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Figure 3. - Oxygen-ion conductivity i n  aluminum oxide. 
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Figure 4. - Aluminum-ion conductivity in  aluminum oxide. 
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Conductivity data  f o r  t h e  cases representing Al+++ motion a r e  presented i n  
f igure  4. 
energies from the measurements of the  present invest igat ion were 2.85 and 
0.66 e lec t ron  v o l t s ,  respectively.  
two portions of the  data indicate  t h a t  the  former represents  the  i n t r i n s i c  case. 
Presumably, therefore ,  since the  atmosphere i n  which t h e  measurements were made 
i s  unchanged, the value of 0.66 e lec t ron  v o l t  represents  e x t r i n s i c  Al+++ motion. 

As  mentioned previously, the  high- and the  low-temperature ac t iva t ion  

The values of the  preexponentials from the  

Although cat ion conductivity would be expected t o  predominate i n  A1203 on 
the bas i s  of ion s i z e ,  far fewer cases of conductivity representing Al+++motion 
have been reported than cases representing O= motion. I n  t h i s  respect ,  A1203 i s  
very much l i k e  MgO, f o r  which, a l so ,  the data from most s tudies  indicate  O= 
motion. 

I n  summary, an evaluation of diffusion and e l e c t r i c a l  conductivity data  f o r  

These ac t iva t ion  energies seem t o  be the ones, respective- 
A1203 shows the  presence of four  ac t iva t ion  energies,  5.87, 2.57, 2.85, and 
0.66 electron vol t s .  
l y  for  i n t r i n s i c  O= motion, e x t r i n s i c  O= motion, i n t r i n s i c  Al+++ motion, and 
e x t r i n s i c  AI+++ motion. 

Comparison of Aluminum Oxide with Magnesium Oxide 

Both oxides are good examples of the  t r u l y  ionic  oxides. The MgO conduc- 

Aluminum 
t i v i t y  data  have previously been evaluated ( r e f .  1). 
can be s a t i s f a c t o r i l y  explained by ionic  mechanisms of conductivity. 

They possess features  t h a t  
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oxide might therefore  be expected t o  behave s imilar ly .  A t  t h i s  point,  a com- 
parison of t h e  values of i n t r i n s i c  a c t i v a t i o n  energy Q r a t i o s  with ionic  
radius  r r a t i o s  for t h e  ions i s  of i n t e r e s t .  

Q -  
0- = - -  5*87 - 2.06 

&Ai+++ 2.85 

For MgO, 

1.49 Qo= 5.22 - - - -  
- 3.50 - 

%g++ 

- - -  1.40 - 2.46 Lo= - 
.a+++ 0.57 

For MgO, 
r 

Mg" 
1.79 

O= 1.40 - - - -  
- 0.78 - r 

(Radius r a t i o ) A l  0 
- - -  2 * 4 6  - 1.37 - 

(Radius r a t i o )  1 . 7 9  
MgO 

Such r e s u l t s  seem t o  imply t h a t  t h e  same mechanism of diffusion appl ies  with 
both oxides. Furthermore, since the  ac t iva t ion  energy increases with the  s ize  
of the  ion, apparently t h e  posi t ive ions a r e  not being polarized t o  an appre- 
c iable  extent.  Although the  t h e o r e t i c a l  bas i s  of t h i s  e f f e c t  based upon funda- 
mental diffusion theory i s  not obvious, it i s  important t o  note t h a t  t h i s  same 
phenomenon a l s o  occurs with c e r t a i n  of the chlorides f o r  which the  necessary 
data  a r e  avai lable .  It does not seem t o  occur with two ionic  so l ids  when only 
one of them has a close-packed l a t t i c e .  

CONCLUSIONS 

With ac t iva t ion  energies as guides, an attempt was  made t o  determine the 
current c a r r i e r s  f o r  the  conductivity process i n  aluminum oxide. Aluminum oxide 
conductivity data possess fea tures  t h a t  can be s a t i s f a c t o r i l y  explained by ionic  
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mechanisms of conductivity. 
oxide showed some s c a t t e r  and while aluminum-ion diffusion-controlled t r a c e r  
data  were not avai lable ,  t h e  avai lable  data  a l l  lead t o  a consis tent  picture .  
The mechanism of conduction i n  s ingle  c rys t a l s  and polycrystals  appears t o  be 
t h e  same. Many fea tures  previously observed with magnesium oxide likewise ap- 
peared i n  the  aluminum oxide data.  
r e l a t i v e l y  large va r i a t ion  of t h e  preexponential term, espec ia l ly  between 
s ingle  c r y s t a l  and polycrystal l ine specimens , but with no change i n  ac t iva t ion  
energy. 
avai lable .  A s  was t h e  case with magnesium oxide, most of t h e  l i t e r a t u r e  conduc- 
t i v i t y  data  seems t o  be f o r  conductivity control led by oxygen-ion t ransport .  

While t h e  oxygen se l f -d i f fus ion  data  f o r  aluminum 

Among these fea tures  should be mentioned the  

A thorough understanding of t he  causes of t h i s  phenomenon i s  not yet 

The values for the  ac t iva t ion  energies f o r  aluminum oxide appear t o  be the  
following: 5.9 e lec t ron  v o l t s  for i n t r i n s i c  oxygen-ion motion, 2.6 e lec t ron  
vo l t s  f o r  ex t r in s i c  oxygen-ion motion, 2.9 e lec t ron  v o l t s  f o r  i n t r i n s i c  
aluminum-ion motion, and 0.66 e lec t ron  vo l t  f o r  ex t r in s i c  aluminum-ion motion. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 19, 1965. 

REFERENCES 

1. Davies, Myron 0. :  Transport Phenomena i n  Pure and Doped Magnesium Oxide. 
J. Chem. Phys., vol. 38, no. 9, May 1, 1963, pp. 2047-2055. 

2. Lidiard,  A. B.:  Ionic Conductivity. Encyclopedia of Physics, Springer- 
Verlag (Ber l in) ,  vol. 20, 1957, pp. 246-349. 

3. Pappis, J.; and Kingery, W. D . :  E l e c t r i c a l  Properties of Single-Crystal  and 
Polycrystal l ine Alumina a t  High Temperatures. J. Am. Ceramic Soc., 
vol. 44, no. 9, Sept. 1961, pp. 459-464. 

hochvakuumgesintertem Aluminiumoxyd (E lec t r i ca l  Resistance of Pure High 
Vacuum Sintered Aluminum Oxide). Z. Angew. Phys. , bd. 6,  no. 4, 1954, 

4. Heldt, K u r t ;  and Haase, Giinter: Der e lek t r i sche  Widerstand von reinem 

pp. 157-160. 

5. Oishi, Y.; and Kingery, W. D.: Self-Diffusion of Oxygen i n  Single Crystal  
and Polycrystal l ine Aluminum Oxide. J. Chem. Phys., vol. 33, no. 2,  
Aug. 1960, pp. 480-485. 

6. Schmalzried , Hermann: Ionen- und Elektronenleitung i n  bin&-en Oxiden und 
ih re  Untersuchung m i t t e l s  EMK-Messungen (Ion and Electron Conductivity i n  
Binary Oxides and Their Invest igat ion with Electromotive Force Measure- 
ments). Z. Physik. Chem. (Frankfurt), bd. 38, 1963, pp. 87-102. 

7. Neuimin, A. D.; and Pal'guev, S. F.: Transference Numbers i n  Solid Oxides. 
Dokl. Akad. Nauk, SSSR, vol.  143, no. 6, Apr. 1962, pp. 1388-1391. 

11 



8. Kingery, W. D.; and Meiling, G. E . :  Transference Number Measurements f o r  
Aluminum Oxide. J. Appl. Phys., vol. 32, no. 3, Mar. 1961, p. 556. 

9. Kuczynski, G. C.;  Abernethy, L.; and Allan, J.: Sinter ing Mechanisms of 
Aluminum Oxide. Kinetics of High-Temperature Processes, ch. 21, Cambridge 
Tech. Press (M.I.T.), 1959, pp. 163-172. 

10. Paladino, A. E.; and Kingery, W. D. :  Aluminum Ion Diffusion i n  Aluminum 
Oxide. J. Chem. Phys., v O ~ .  37,  no. 5,  Sept. 1, 1962, pp. 957-962. 

1 2  NASA-Langley, 1965 E-2866 



"The aeronautical and space actiuities of the United States shall be 
conducted so as to contribute . . . to the expansion of human h o w l -  
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its actiuities and the results thereof .'I 

-NATIONAL AERONAUTICS AND SPACE ACT OF l9SS 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results .of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details on the availability o f  these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

N AT1 0 N A L A E RO N A UTI CS A N D SPACE A DM I N I STRATI 0 N 

Washington, D.C. PO546 


